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The symmetry inherent to many biological macromolecular

assemblies has been implicated in a range of crystal

pathologies, including lattice-translocation defects (LTDs).

Crystals suffering from classic LTDs contain two lattices that

are shifted with respect to each other but nonetheless remain

within the length of coherent interference. LTD introduces

an undesirable intensity modulation into diffraction data,

resulting in scrambled or partially scrambled electron

densities. In this report, LTD theory is extended and a new

general method for determining defect fractions is developed

based on the heights of the non-origin peaks observed in

native Patterson maps. The application of this method to

crystals of lentiviral integrase in complex with its cofactor,

where the observed translocation vector does not equal a

small integral fraction of a unit-cell edge, is reported and its

general application to all classic LTD cases is predicted.
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1. Introduction

Homo-multimeric macromolecules related by noncrystallo-

graphic symmetry (NCS) can sometimes allow alternative

alignments of successive layers in a growing crystal, resulting

in a polysynthetic twin containing two (or more) identical

coherently diffracting lattices. Such crystal pathology, which is

commonly referred to as a lattice-translocation defect (LTD),

order–disorder twinning or one-dimensional disorder, can

occur in crystals of homo-multimeric as well as monomeric

macromolecules (Howells & Perutz, 1954; Bragg & Howells,

1954; Trame & McKay, 2001; Wang, Kamtekar et al., 2005;

Wang, Rho et al., 2005; Hwang et al., 2006; Tanaka et al., 2008;

Zhu et al., 2008). One common case of classic LTD results in a

pair of lattices whose crystallographic origins maintain the

same environment, for example �z = 1/2, resulting in an origin

shift to an equivalent but not identical crystallographic posi-

tion in monoclinic space groups (Wang, Kamtekar et al., 2005).

Systematic phase shifts between the two lattices result in

strong modulations in the observed diffraction intensities.

Owing to the presence of multiple crystallographic origins in

such crystals, the averaged contents of the polysynthetic

crystal can be represented by overlapping structures with

different occupancies (Wang, Kamtekar et al., 2005; Zhu et al.,

2008). Polysynthetic macromolecular crystals belong to

general polytypic structures; in crystals of small molecules,

layer structures of multiple distinct unit-cell contents can be

modeled owing to sufficiently large observation-to-parameter

ratios (Durovic, 1992). Our previous and current treatments

are designed to reduce the multiple unit-cell contents to the

single unit-cell content in the absence of sufficient observa-

tions in the diffraction data from macromolecular crystals

(Wang, Kamtekar et al., 2005; Wang, Rho et al., 2005).



Howells, Perutz and Bragg, who studied crystals of tetra-

meric imidazole-methemoglobin, reported the first classic

LTD case in 1954; to our knowledge, the structure of this

crystal form remains undetermined (Howells & Perutz, 1954;

Bragg & Howells, 1954). In the past half century, new cases of

LTDs have sporadically been reported, with some theoretical

consideration but no practical proposals for structure deter-

mination (Glauser & Rossmann, 1966; Pickersgill, 1987). More

recent reports and efforts notwithstanding, the full extent of

the LTD problem in macromolecular crystallography remains

unknown because most undetermined structures remain

unreported. The hallmark of crystals with LTD is an unusual

diffraction pattern with subsets of sharp and streaked Bragg

spots. The extent of streaked reflections is a function of the

randomness of the distribution of the translocated layers in

the crystals (Cochran & Howells, 1954; Wang, Kamtekar et al.,

2005). No streaks will be present if translocation occurs

regularly, for example every other or every third layer, which

would double or triple the unit-cell parameters. Streaks only

occur for those Bragg spots that suffer from negative inter-

ference in structure factors from the alternate lattices. The

extent of diffraction-spot smearing depends on the frequency

of the lattice translocation. Streaks may not be observable

when the affected Bragg spots suffer from minimal inter-

ference because of a very low defect fraction or from maximal

interference, which could result in zero intensity in some cases.

In addition, the LTD problem may escape detection when

streaks only occur in a small subset of reflections. It is

important to note that the streaks observed in diffraction

images from crystals affected by LTD differ from those caused

by correlated dynamic motions of macromolecular complexes

within a given single-crystal lattice. In the latter case, most or

all of the Bragg spots are affected (as well as non-Bragg

reflections), but the contribution of thermal diffuse scattering

to their total intensities is small (Doucet & Benoit, 1987). In

the LTD case, the smearing is more pronounced and is

distributed unevenly among the Bragg spots. Another hall-

mark of LTD is the presence of strong non-origin peaks in

native Patterson maps which correspond to physically

impossible packing defined by the translocation vector(s)

relating crystallographic origins of the intermingled lattices.

Structure determination and analysis of crystal packing may

be required to distinguish between LTD and translational

NCS.

2. General correction formulation for the LTD problem

Five decades after the initial description of the classic LTD

(Howells & Perutz, 1954; Bragg & Howells, 1954), it was

shown to be possible to unscramble the unit-cell contents in

two special cases of LTD (Wang, Kamtekar et al., 2005; Wang,

Rho et al., 2005). In the first case, the translocation vector

td was (0, 0, 1/2), which affects the intensity of reflections with

odd l indices only, and in the second case td was (0, 0, 1/3),

which affects the intensity of reflections with l indices that are

not divisible by three. In both cases, it was possible to estimate

the defect fractions by examining the extent of the modulation

of the affected reflections. However, such a specialized

method is not applicable to a generalized translocation vector,

which may not represent a small integral fraction of a unit-cell

edge, for example td = (0.096, 0,�0.096), as in a case discussed

here. Therefore, a more general approach to the LTD problem

is needed.

Following the theory described in a previous study (Wang,

Kamtekar et al., 2005), the phase shift between the two crys-

tallographic origins introduced by the LTD is exp(2�ihtd),

where h and td are the reciprocal and translocation vectors,

respectively. Let Fo(h) be the unit structure factor and � the

frequency of translocation (the volume contributions of the

two lattices will thus be � and 1 � �); the total structure factor

Ftotal for a crystal with an LTD can then be formulated as

FtotalðhÞ ¼ FoðhÞ½ð1� �Þ þ � expð2�ihtdÞ�: ð1Þ

The interference resulting from the phase shift leads to total

observed intensities that are related to the intensities of a

single layer (or single unit lattice) by the following equation,

where f is the factor for undesirable intensity modulation and

1/f is the correction factor to be applied to observed data to

remove the undesirable modulation,

ItotalðhÞ ¼ ½ð2�
2 � 2�þ 1Þ þ 2�ð1� �Þ cosð2�htdÞ�Io ¼ fIo:

ð2Þ

Using this formula with the derived global parameters � and td

from native Patterson maps, it was possible to solve the

structures of ’29 DNA polymerase and the HslV–HslU

complex from crystals suffering from LTDs (Kamtekar et al.,

2004; Wang, Kamtekar et al., 2005; Wang, Rho et al., 2005). We

applied (2) for intensity correction in most cases of ’29 DNA

polymerase (Wang, Kamtekar et al., 2005) because there

was a single non-origin peak in native Patterson maps with

td = (0, 0, 1/2). This method has been successfully applied to

solve other LTD-affected structures such as SARS S1

receptor-binding domain in complex with a neutralizing anti-

body, the bacterial carboxysome shell protein CcmL and the

1918 H1N1 influenza neuraminidase (Hwang et al., 2006;

Tanaka et al., 2008; Zhu et al., 2008).

In one case of ’29 DNA polymerase (Wang, Kamtekar et

al., 2005), there were two non-origin peaks related by inver-

sion symmetry, with td = (0, 0, 0.4735) or td = (0, 0, 0.5265). (2)

is still applicable for intensity correction because this formula

is a cosine function and the modulation factor f is independent

of the choice of either of the two vectors td or is the same as

the averaged value from using both vectors. We note that the

summation of the modulation contributions from the two

inversion symmetry-related vectors in this case must be made

by intensity addition. If the summation is made by complex

structure-factor addition, two imaginary components directly

cancel out and the length of the resulting vector doubles. Such

predicted modulation failed to explain the periodicity of the

observed intensity modulation or to remove the observed

modulation.

Here, we report another example of LTD in crystals

containing the N-terminal and catalytic core domains of

maedi-visna virus (MVV) integrase (INNTD+CCD) in complex
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with the integrase-binding domain of lens epithelium-derived

growth factor (LEDGFIBD) (reviewed in Engelman & Cher-

epanov, 2008). In this case, the translocation-defect fraction

(�) could not be explicitly derived from the modulation of the

observed intensities as was performed in the previous special

LTD cases. To treat this problem, we developed a novel

method to determine the defect fraction, in which we

systematically apply a range of trial values of � to demodulate

the data, using the native Patterson function to gauge the

effectiveness of demodulation for each given �. Critically, this

procedure allows us to establish the relationship between the

defect fraction and the height of the non-origin peaks

observed in Patterson maps.

In the case discussed here and all previous cases, the

formula only deals with one single translocation vector for

given space groups and their inversion symmetry-related

vectors are ignored because they have identical f in (2). When

the LTD problem occurs in a high-symmetry space group, the

translocation must occur pairwise and the translocation frac-

tions for all symmetry-related td pairs must be identical so that

the original crystallographic symmetry is statistically retained.

Otherwise, crystallographic symmetry will be reduced to

noncrystallographic symmetry. In the case of higher symmetry

space groups, the modulation factor f is a weighted average

from all N symmetry-related td. In this formula,

ItotalðhÞ ¼
1

N

P
½ð2�2 � 2�þ 1Þ þ 2�ð1� �Þ cosð2�htdÞ�Io

¼ fIo; ð3Þ

where summation is carried out for all symmetry-related td, all

inversion symmetry-related td may be excluded. In the current

implementation, the minimal modulation factor is set to be

0.05 so that the correction factor will not exceed 20. It should

be noted that Trame & McKay (2001) have also proposed a

similar formula for correcting the LTD problem, which is a

specific case of our formulation with � fixed at 0.5.

3. Experimental procedures for detection of LTD

3.1. Protein expression, purification and crystallization

Details of the expression, purification and crystallization of

the MVV INNTD+CCD–LEDGFIBD complex have been

described elsewhere (Hare et al., 2009). Briefly, crystal form

(CF) 1 grew in the presence of 25–30% Jeffamine M600

(Hampton Research) as the main precipitant. CF2, which was

initially identified using microseed matrix screening (D’Arcy

et al., 2007), grew in the presence of 0.7–0.9 M dibasic

ammonium phosphate and 2–5% Jeffamine M600.

3.2. Data collection and processing

Diffraction data were collected at Diamond Light Source

(Oxfordshire, England) on undulator beamlines I02 and I04.

CF1 diffracted to�3.3–3.5 Å resolution and belonged to space

group P21 (unit-cell parameters a = 91.1, b = 148.9, c = 91.1 Å,

� = 113.4�); the structure was solved by molecular replacement

using the program MOLREP (Vagin & Teplyakov, 1997, 2000)

with individual search domains of HIV-1 integrase (from

PDB entries 2b4j and 1k6y) and LEDGF (PDB entry 2b4j)

(Cherepanov et al., 2005; Wang et al., 2001). The final model

together with the experimental data was deposited in the

RCSB Protein Data Bank with accession code 3hpg. In a bid

to visualize details of the protein–protein complex that were

not defined in CF1, we identified an additional crystal form

CF2 that typically diffracted to �2.5–2.9 Å resolution. How-

ever, CF2 exhibited a pronounced LTD, which could be

characterized following the initial structure determination.

The original data set collected for CF2 (data set 1) revealed

the space group to be P21, with unit-cell parameters a = 102.7,

b = 83.0, c = 115.3 Å, � = 101.8�. These data were integrated

and merged to 2.6 Å with an overall Rmerge of 14.1% using

MOSFLM and SCALA (Evans, 1993; Leslie, 1992). Subse-

quently, a higher quality data set was collected from another

crystal that could be processed in MOSLFM/SCALA or XDS

(Kabsch, 1993) to 2.64 Å with an Rmerge of 11.8% and 10.2%,

respectively (Table 1). The majority of the diffraction images

obtained from CF2 samples exhibited exclusively sharp Bragg

reflections, which provided proper profiles for peak integra-

tion. However, a segment of images covering �50� of the
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Table 1
Data-collection and refinement statistics for crystal form 2.

(a) Data processing. Values in parentheses are for the highest resolution shell.

Data set 1 (� = 0.22) Data set 2 (� = 0.17)

Space group P21 P21

Unit-cell parameters
(Å, �)

a = 103.1, b = 83.4,
c = 115.5, � = 101.8

a = 102.9, b = 83.2,
c = 115.3, � = 102.0

Resolution (Å) 40–2.6 (2.74–2.6) 40–2.64 (2.71–2.64)
Rmerge (%) 14.1 (52.8) 10.2 (58.6)
Multiplicity 2.8 (2.9) 3.4 (3.3)
I/�(I) 5.0 (2.0) 8.1 (2.1)
Completeness (%) 98.1 (97.8) 99.5 (99.4)

(b) Refined structures. Incomplete or final models refined in REFMAC
(v.5.5.0088) using matched NCS and TLS groups, identical geometric restraints
and scaling settings against original or corrected data sets, respectively.
Because further model building was not possible prior to data correction, the
statistics indicate feasibly achievable outcomes in terms of model-to-data
agreement and model quality prior to and following data correction.

Data set 1 (� = 0.22) Data set 2 (� = 0.17)

Original Corrected Original Corrected†

Reflections (work) 52333 52333 50264 50264
Reflections (test) 2940 2940 2827 2827
Rwork (%) 27.2 22.4 27.0 22.6
Rfree (%) 30.0 24.5 29.8 25.3
Weighted Rwork (%) 28.2 23.1 26.8 22.4
Weighted Rfree (%) 30.8 25.2 30.0 25.2
No. of protein atoms 8631 8625 8454 8625
No. of ligand/ion atoms 4 43 4 43
No. of water molecules 0 110 0 110
R.m.s.d. bonds (Å) 0.018 0.012 0.018 0.013
R.m.s.d. angles (�) 1.82 1.31 1.80 1.41
Average B factor (Å2) 55.9 53.0 55.9 59.0
Ramachandran plot (%)

Favored 90.7 97.1 95.8 96.6
Allowed 6.9 2.9 3.5 3.2
Outliers 2.4 0.0 0.7 0.2

† The final model refined against corrected data set 2 was deposited in the Protein Data
Bank (PDB code 3hph).



spindle-rotation spectrum contained both sharp and streaked

reflections (Figs. 1a and 1b). It was notable that the severity of

the diffraction anomalies varied between individual crystals,

precluding the indexing and/or processing of data sets

collected from the majority (over 90%) of samples. Layer-

averaged intensity along the diagonal (h � l) axis showed

strong intensity modulation, which was as high as fourfold

between adjacent layers (Fig. 1c). As in previous LTD cases

(Bragg & Howells, 1954; Wang, Kamtekar et al., 2005), the

data could also be indexed in a larger ‘statistically ortho-

rhombic’ unit cell of dimensions a = 137.1, b = 169.8, c = 83.2 Å.

This type of ‘twinning’ is in contrast to merohedral (or pseudo-

merohedral) twinning, where the cells of apparent higher

order symmetry are related to the cell of correct symmetry by

adding extra rotational symmetry from twinning operations.

3.3. Initial structure determination and characterization of
the LTD in CF2

The CF2 structure was originally solved by molecular

replacement in data set 1, using MOLREP with the MVV IN

CCD dimer (from CF1) as a search model, followed by IBD of

LEDGF (from PDB entry 2b4j) and finally MVV IN NTD. A

pair of IN dimers were found to form a tetramer with four

associated LEDGF chains. Initial refinement using REFMAC

(Murshudov et al., 1997) and PHENIX (Adams et al., 2002)

with manual building in Coot (Emsley & Cowtan, 2004)

resulted in a model with an Rwork and an Rfree of 28% and

31%, respectively. Including TLS refinement and using data

set 2, the R factors were further reduced to 27% and 30%,

respectively (Table 1). Although the statistics were borderline

acceptable, the resulting Fo � Fc maps displayed significant

swathes of uninterpretable positive density.

Inspection of the native Patterson maps revealed two non-

origin peaks with heights of 22.9 and 5.7% of the origin peak

for data set 2 with fractional coordinates of (0.096, 0.000,

�0.096) and (0.192, 0.000, �0.192), respectively (Fig. 2). The

same peaks were visible for data set 1 but with respective

heights of 29.3 and 6.8%. The non-origin peak coordinates

suggested a translational symmetry within the asymmetric unit

(ASU) with identical structures separated by �16 and 32 Å

along the �a/c (or a/�c) diagonal. Because the tetramer

present in the ASU is �90 Å across in this direction such a

translation is physically impossible, even though a ghost

density corresponding to the model shifted by 16 Å could

indeed be observed in the Fo� Fc map (Fig. 3). The features of

the Patterson map as well as the density for a shifted structure

strongly suggested a case of LTD. Another indicator was the

presence of periodic sharp and streaked reflections in the

diffraction patterns along the (h � l) index direction (Fig. 1).

4. Demodulation of data and final refinement

Using (3), it is possible to demodulate diffraction data from

crystals with an LTD, provided the global parameters, the

translocation vector (td) and the translocation frequency (�),

have been determined. The former can be derived from the

native Patterson map and in this case td is (0.096, 0, �0.096).

Previous examples of demodulating data from crystals with

LTDs relied on td being equal to an integral fraction of a unit-

cell parameter (for example, 1/2 or 1/3), which helped in

determination of the defect fraction � (Wang, Kamtekar et al.,

2005; Wang, Rho et al., 2005; Hwang et al., 2006). Because such

rules do not apply in this case, we estimated the global para-

meter � using a trial-and-error procedure (Fig. 4). The data

were systematically demodulated with various values of � and

native Patterson functions were calculated for each demodu-

lated data set (Fig. 2); the optimal value of � was determined

based on the flattening of the native Patterson function.

The new demodulation procedure is based on the assump-

tion that the LTD is solely responsible for modulation of the

data and for non-origin peaks in native Patterson functions.

Proper treatment should minimize the intensity modulation as

well as the non-origin peaks in the corrected data. The

demodulation function is an inverse of the original modulation

function that directly subtracts the contribution from the

additional lattice to the observed diffraction intensities. In

undercorrected data we expect to see weakening of the non-
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Figure 1
Diffraction data from LTD-affected crystal form 2. (a) Diffraction image showing exclusively sharp reflections. (b) Diffraction image showing both sharp
and diffuse reflections. (c) Layer-averaged intensities along the h � l index for data set 1 (white circles) and data set 2 (black circles). The two data sets
cannot be scaled prior to correction and are not on the same scale.



origin peaks in the native

Patterson functions, together

with some residual modulations,

whereas overcorrection would

result in an inverted modulation

and the appearance of a negative

non-origin peak at the same

location (Fig. 4).

For data set 2, a value of

� = 0.17 (i.e. assuming that the

translocated lattice accounts for

17% of the crystal volume)

resulted in the best flattening of

the non-origin Patterson peaks.

Corrections using higher defect

fractions led to inverted modu-

lation along the (h � l) indexes

(Fig. 4). In the overcorrected

data, the first-order intensity

maximum appeared at the (h� l)

index where the first-order

intensity minimum was located in

the uncorrected data. The length

of the apparent new transloca-

tion vector for the overcorrected

data was doubled from that of the

original vector in the uncorrected

data and the length of the

reciprocal vector was halved.

Thus, with the overcorrected

data we saw two new features

in the native Patterson functions:

a strong positive peak at

2�t = (0.192, 0.000, �0.192) and

a negative peak at �t = (0.096,

0.000, �0.096).

The percentage amplitude

change between the corrected

and uncorrected data (i.e. the

linear cross R factor) for data set

2 was 13.5%. As expected, the

demodulation led to a significant

reduction of the crystallographic

R factors for the same

partially refined model (Rwork/

Rfree decreased from 27.0/29.8%

to 24.2/27.5%); our estimation

suggested that the corrections

to structure-factor amplitudes

directly contributed to the

reduction in the R factors.

Furthermore, the resulting Fo �

Fc map was vastly improved,

unambiguously allowing the

placement of several new amino-

acid residues and solvent mole-

cules. Following additional cycles
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Figure 3
Stereoview of part of the model built into the native data. A helix of the actual model is shown as a yellow
ribbon representation and the position of the same helix translocated by 16 Å along the a/�c diagonal is
shown in pink. The black dashed lines represent the translocation vector. 2Fo � Fc (purple–blue) and Fo �

Fc (green) electron-density maps are shown contoured at 1.0� and 2.5�, respectively.

Figure 2
Patterson maps of native and demodulated data from data set 2. (a) Native uncorrected Patterson showing
major non-origin peaks at (0.096, 0, �0.096) and (0.192, 0, �0192). Positive peaks are shown as black
contours and negative peaks are shown as red contours. (b) Patterson from corrected data with � = 0.17; off-
origin peaks are minimized. (c) Patterson from overcorrected data (� = 0.35); the (0.096, 0, �0.096) peak
becomes negative and the (0.192, 0, �0.192) peak increases in height. (d) Graph showing the major non-
origin Patterson peak heights as a function of � values.



of building and refinement in REFMAC (including TLS

refinement), the final model had an Rwork/Rfree of 22.6/25.3%

and good geometry (Table 1). The coordinates and the

corrected data set 2 have been deposited in the RCSB Protein

Data Bank (PDB code 3hph). Because the defect fractions in

this crystal were relatively small, the interference from doubly

translocated layers (that should in part account for the second

non-origin peak in the original native Patterson function)

could be ignored. For data set 1, the optimum value of � was

found to be �0.22, explaining the more pronounced intensity

modulation and higher native non-origin Patterson peaks

compared with those in data set 2. Interestingly, despite the

relatively high Rmerge value and lower signal-to-noise ratio in

data set 1, the final model refined remarkably well against

these data following the simple demodulation (Table 1).

5. Structural basis of the LTD in the integrase complex

The structural basis for the lattice translocation immediately

became obvious on examination of the partially refined model

(Fig. 5a). The twofold NCS axis relating the two halves of the

ASU is perpendicular to but does not intersect the crystallo-

graphic 21 screw axis (Fig. 5b). As a consequence, symmetry

mates related by the 21 axis are shifted with respect to each

other by �8 Å along the �a/c diagonal. The internal

symmetry of the ASU allows an alternative packing, i.e. an 8 Å
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Figure 5
Structural basis of the lattice-translocation defect. (a) Molecular packing within crystal form 2, as viewed along the crystallographic 21 axis. The
asymmetric unit contains a tetramer of IN with four associated LEDGF chains, which pack against each other in layers (dark blue line). Two asymmetric
units are highlighted in blue and red. It is possible for another packing arrangement to be produced resulting from a 16 Å shift of one layer with respect
to another. (b) Closer view of the crystal packing. The blue and red ASUs are related by the crystallographic twofold axis (black oval). The ASU has its
own internal twofold symmetry (gray lines) that runs perpendicular to but does not intersect the crystallographic twofold axis.

Figure 4
Details of the demodulation process. (a) Data set 2 demodulated with defect fractions � near the correct value of 0.17 and with overcorrected data
(� = 0.25; dashed line). (b) Data set 1 demodulated with defect fractions � near the correct value of 0.22. This figure is on the same scale as Fig. 1(c), with
the baseline in (a) offset by 1000.



shift in the opposite direction, resulting in the occasional layer

translocation by �16 Å (Fig. 5a). Such a translocation would

explain the extra density present in the Fo � Fc map and the

(0.096, 0,�0.096) vector observed in the native Patterson map.

6. Corrections for high-order lattice-translocation
defects

The crystal packing in CF2 (Fig. 5a) does not allow a single

layer translocation by td = (0.192, 0, �0.192), which would

correspond to a 32 Å shift between two consecutive layers.

Minimally, lattices related by a 32 Å shift must be separated by

at least one layer or one block. We hypothesize that the

secondary non-origin Patterson peak at (0.192, 0, �0.192) can

be explained by a rare occurrence of three interfering blocks.

Here, if we choose the intervening block to be the reference,

the Patterson peaks at (0.192, 0, �0.192) would correspond to

combined lattice shifts of +td and �td, where the primary td is

(0.096, 0, �0.096), with respect to that reference. Each layer

can only have one translocation vector of either +td or�td, but

not both. Otherwise, the layer has no net translocation.

Obviously, the occurrence of a third translocated block with

volume fraction � is a function of �. If the two translocated

blocks on either side of the reference block have the same sign

in td, the formula for the three translocated blocks is reduced

to the formula of the two translocated blocks as defined by (1)

(i.e. the addition of three structure-factor vectors from the

three blocks is independent of the order of the vectors).

Importantly, the existence of multiple interfering blocks may

not be visible in the X-ray data if the number of intervening

layers exceeds the length of X-ray coherence (a situation that

rarely occurs in polytypic structures of small molecules). Thus,

in general � � �. Only when the two translocated blocks have

opposite signs (td and�td) with respect to the reference block,

a high-order interference occurs after modifying (1) and (2) as

follows, where � = 2�htd,

FtotalðhÞ ¼ FoðhÞfð1� �Þ þ � expð�Þ½ð1� �Þ þ � expð�Þ�g

¼ FoðhÞ½ð1� �Þ þ �ð1� �Þ expð�Þ þ �� expð2�Þ�; ð4Þ

ItotalðhÞ ¼ fIoðhÞ; ð5aÞ

f ¼ ½1� 2�ð1� �Þ � 2�2�ð1� �Þ�

þ ½2�ð1� �Þð1� �Þ þ 2�2
ð1� �Þ�� cosð�Þ

þ 2��ð1� �Þ cosð2�Þ: ð5bÞ

These equations (4 and 5) have two variables, � and �, to be

determined. When � = 0 these equations return to (1) and (2).

Because � � �, we can estimate the maximal contribution of

the higher order interference by assuming � = �. The co-

efficient ratio between the exp(2i�) and exp(i�) terms in (4) is

�/(1 � �), which is relatively small when � < 0.2. The

coefficient ratio between the cos(2�) and cos(�) terms is

�/(1 � � + �2), which is even smaller. Using a trial-and-error

procedure similar to that described above, we estimated �
values of �0.05 and 0.04 for data sets 1 and 2, respectively,

which were much smaller than the corresponding � values.

When we applied the correction factor derived from (5) for

the two data sets, we observed further flattening of the

secondary non-origin Patterson peak at (0.192, 0, �0.192).

However, this higher order correction did not lead to an

additional significant improvement of the refinement statistics

compared with that using the single translocation model based

on (1). Thus, at least in this case, the higher order interference

appears to be negligible.

7. Prospective remarks

LTD is a relatively common problem that may often have

escaped detection. In fact, the LTD problem in CF2 was only

discovered following considerable efforts to complete model

building and refinement, when ghost densities for a trans-

located helix were initially noticed (Fig. 3). Prior to the

recognition of the LTD, the structure could be determined by

molecular replacement and refined using uncorrected data to

obtain crystallographic Rwork and Rfree values of �27% and

�30%, respectively, which are borderline acceptable for a

correct structure. However, some of the ghost densities had

been interpreted as ordered solvent or Jeffamine polymer,

which seemed to improve the refinement statistics but did not

make physical sense. Hence, identification of the LTD for the

protein–protein complex, followed by correction using the

new methods described here, significantly improved the

quality of the resulting model (Table 1). We believe that this

demodulation study highlights a new methodology that could

be used for the detection and correction of hidden LTD

problems among reported structures whose statistics are

borderline acceptable. In previously published structures

where LTD was not recognized (Bochtler et al., 2000; Ishikawa

et al., 2000; Sousa et al., 2000; Wang, 2001; Wang, Rho et al.,

2005), an incorrect quaternary arrangement of the HslU–HslV

complex with a disordered interface between HslU and HslV

was observed, which was part of the shifted layer–layer

structure but with all layer interactions maintained elsewhere.

In principle, layer–layer interactions within a crystal con-

taining an LTD are identical within and between the alternate

lattices, perhaps only limited by imprecision of the NCS as in

the case of the integrase complex. One should expect a 50:50

distribution of the two lattices in CF2 with no obvious ener-

getic difference between regular layers and the translocated

layers (Fig. 5a). In practice, however, the observed defect

fractions significantly varied between individual crystals; the

relative abundances of the alternate lattices are likely to be

determined by the direction of crystal growth and asymmetric

interactions of layers with the surrounding environment; for

example, with cover slips or at the solvent–air interface of

crystallization droplets. Thus, correct estimation of the defect

fraction is critical to demodulation of twinned data sets

because the defect fraction is not always at 50%:50%. We note

that demodulation with a fixed � value of 0.5 as implied from a

physical model (Trame & McKay, 2001) leads to over-

correction of the data set, which can be seen from the occur-

rence of large negative peaks in the native Patterson maps

calculated from the treated data. In their uncorrected data, the
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heights of the non-origin peaks were 10.6% of the origin peak,

which was smaller than their theoretical value of 16.7% (or

1/6) for � = 0.5. Furthermore, in the remaining data sets from

the same work the heights of the non-origin Patterson peaks

varied from 9.0% to 15.0%, suggesting that � was indeed

variable between different data sets.

Most previous examples of demodulation of LTD data have

relied on the translocation vector being an integral fraction of

a unit-cell dimension, so that an explicit method can be

derived for the calculation of the defect fraction �. Alter-

natively, Tanaka et al. (2008) estimated this value empirically

by rigid-body refinement of multiple overlapping copies of a

partially refined solution with varying occupancy values; the

occupancy giving the lowest R factors was used as �. This

multiple packing conformer approach with variable occupancy

can explain diffraction data well when there are sufficient

observation-to-parameter ratios in high-resolution small RNA

structures (Shah & Brunger, 1999). Here, we have described a

more straightforward method which is not reliant on integral

fraction translocation or even on the possession of a partially

refined model. This procedure may allow the detection of

many other unrecognized LTD problems without the necessity

of examining original diffraction images. Furthermore, it could

be possible to use this method in standard crystallographic

software and apply it automatically from within a structure-

refinement routine, as has already been performed for dealing

with cases of merohedral and pseudomerohedral twinning in

the current PHENIX and REFMAC engines (Adams et al.,

2002; Murshudov et al., 1997). An automatic comparison of the

presence of strong non-origin peaks in the observed native

Patterson maps with their absence in calculated native

Patterson map from models can help to detect a potentially

hidden LTD problem in the data.
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